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Mwraet-Io this contribution we treat the problem of en fnfffte

r@aO&lh WllVt?gtddS PU’bdidty loaded by means of inffoftely tbfn

resxnumt frfsee.

The method of solution breaks down the problem into two separate

etepw 1) the mokiport network cbaraeterisetion of the resonant fr@ 2) the

network analysis of the equivalent periodic network,

The results for the resmreot iris cen be used for various appficatiorq

such es the deeign of wavegnide filters end metehiog networks. h the

ffmitfng cmee of purely capacitive or induetfve frfsq the resadts agree

exactly with existing experbnentaf end nuruericaf vefuee.

The size of tbe eigenvefne equetion to be solved for the periodfc

etruehue equafs Iudf the number of ports of the network ehareeterizatfon

of the his and is generalfy srnaff (typically five to seven). The eigenvafuee

beve good convergence propertk with respect to the size of the metrix.

I. INTRODUCTION

I
n recent years the corrugated waveguide has found wide

use in radar and communication systems. Significant

research has been done on the problem of the circular

corrugated waveguide. We distinguish three main ap-

proaches:

1) the modified boundary condition method, applica-

ble only for a special value of the groove depth [1],

[2];

2) the modified residue calculus technique [1], [3] ap-

plicable only for certain modal configurations;

3) mode matching technique [1] which is fairly general

in applicability.

In the case of the rectangular guide, however, method 1)

cannot be implemented analytically [3], [4]. Method 2) is
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altogether not applicable. Method 3) is also not applicable

for this kind of geometry owing to the nonseparability of

the configuration [4].

Brown in 1958 [5] suggested that a periodically loaded

waveguide be modeled by means of a cascade of identical

multiport reactance connected by a finite number of

uncoupled transmission lines. Each reactance represents a

discontinuity in the cascade, which causes coupling be-

tween waveguide modes otherwise uncoupled. Unfor-

tunately, up to date this approach could not be actually

implemented, due to the lack of proper multiport repre-

sentation of the discontinuity.

Recently, however, a method for deriving lumped,

wide-band equivalent networks of waveguide discontinui-

ties has become available. The above has been applied to

the problems of the inductive and capacitive iris and step

[6], [7]. Apart from having inherently good convergence

properties and involving manipulations with small

matrices only, this approach separates the frequency and

the geometry dependence, so that the analysis need not be

repeated at each frequency point. A detailed discussion

has been given elsewhere [6]–[8]. However, for the con-

venience of the reader, we recall here the concept of

“accessible” and “localized” modes. Accessible modes are

the waveguide modes that being excited at the location of

one discontinuity, are “seen” by the adjacent discontinui-

ties. This includes all the propagating modes of the origi-

nal (unloaded) waveguide, plus, possibly, the first few

evanescent ones, depending upon the separation between

adjacent discontinuities.

Each accessible mode corresponds to a pair of accessi-

ble ports in the multimode equivalent network of the

discontinuity. Between discontinuities, each accessible

mode is described by means of a length of transmission

line. All remaining modes, purely evanescent, are called

localized, as they remain localized to the neighborhood of

the discontinuity that excites them. The latter, collectively,
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gives rise to the energy storage and to

tween accessible modes, represented by

the discontinuity.

The reactance is described by means
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the coupling be-

the reactance of

of its poles and

residues, which are functions of the geometry only, Once

these data are available for a range of geometries the user

need no longer be concerned with the original field prob-

lem. The latter has been translated into a standard multi-

port network analysis problem.

In the case of the periodically loaded rectangular wave-

guide, the resonant iris is the building block of the struc-

ture. Relatively little is known about the resonant iris,

apart from early approximate results for the isolated iris

[9]. The results we will present here for the resonant iris

are also applicable to filter design in waveguides.

The unit cell of the resulting periodic equivalent circuit

consists of a lumped multiport reactance enclosed be-

tween two sets of parallel transmission lines of equal

length. Upon application of the periodicity condition to

the unit cell, the problem of determining the propagation

constant on the corrugated waveguide reduces to the

solution of an eigenvalue equation whose order is equal to

the number of accessible modes, typically two to seven.

The eigenvalues show good convergence properties as the

number of accessible modes is increased.

The transverse fields are described by a linear combina-

tion of the accessible modes, with amplitudes determined

by the eigenvectors of the eigenvalue equation.

II. THE RESONANT IRIS

The geometry of a single resonant iris is illustrated in

Fig. 1. For the purpose of the present application, the iris

is supposed to be symmetric and infinitely thin. The

analysis can be extended to the case of finite thickness,

which might be relevant to other applications, as previ-

ously done for the inductive [6] and capacitive [7] iris.

When the iris is excited by the fundamental TEIO wave-

guide mode in a standard waveguide it is a very good

approximation to assume that the family of LSEX. ~

modes is excited [10], [11]. Owing to the symmetry of the

iris, m can only take odd values and n even values.

For propagation in the z direction, the characteristic

admittance is defined uniquely as the ratio Hx / Ey, where

Oi(XY) = E,

= ~ sin ~ x cos ~y, k+(rn n),

We consider k accessible modes at each side of each iris.

M
Y

bd
c

x
o

z

Fig. 1.

Owing to the symmetry and to the fact that the iris is

infinitely thin, the resulting 21c-reactance matrix of the

discontinuity is of the form

(: :)
(5)

where x is a k x k symmetric reactance matrix. The

Ritz-Galerkin variational expression for the matrix ele-

ments is [6]

xti=@(E)-’.,., I<i, j<k. (6)

The N-dimensional vector ~ represents the function

+i(~>~) in terms of a complete set of expanding functions
satisfying the Ey boundary conditions, oP(x,y)(l < ~ <N)

truncated after N terms, and is given component wise by

0~ = Jc~d@,(x>Y)o~(x>Y) dx@ (7a)

the components of the N X N matrix ~ are obtained from

the Green’s function

– j~(x,y; x’,y’) = ~ 2 Yoi@i(x,y)@i(x’,y’) (8)
i >k

as

(%= JjJJ o,(x)Y)F(x>Y;x’,Y’)v.(x’,y’) dx@dx’@’.
ape we

(7b)

Observe that, consistently, with their definition, the acces-

sible modes do no appear in the above summation. Only

the localized modes contribute to energy storage in the

neighborhood of the discontinuity y.

In order to improve the convergence of the infinite sum

in (8), it is convenient to integrate (7) by parts, making use

of the fact that Ey must be zero at the aperture edges:

x = (a * c)/2 [12, p. 349]. Then a more convenient expres-

sion for XV is given by*

-XV= Q?-B ‘lQ (9)

where Q. the vector corresponding to the mode potential

function

6
+i(x,y) = - Cos ~ Cos My

m a b
(10)

is given by an expression similar to (7a), where +, is

replaced by +, and VP by up= i3/i)xvp. B is the matrix

associated with

–jB(x,y; x’,y’) = ~ 2 Yoi~i(x,.y)~i(x’,y ’). (11)
ik

‘The superscript T denotes transposition.
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A good choice of a basis for the aperture is provided by where the prime indicates that the accessible modes have

the Schwinger’s functions, which being derived by confor- been excluded from the summation. Reverting to single

mal mapping of the static fields, inherently satisfy the index notation, we let 1 correspond to (m, n), h to (p, q), g

edge condition for the inductive and capacitive limits. The to (r, s), so that

defining equation is [11, p. 350] m

cOs~=pllcose
—

(12)
(20)

where
where

P1l=sin~ (13) <
Q~l = —

m< ‘Wsnq
and O= O, r correspond to x = (a T c)/2, respectively. The

coefficients of the finite expansion G*S
Qg,

=~ (21)
m~x

Cos — = ~ Pw Cospo (14)
m<””

a p=l,3,. . .

III. FREQUENCY DEPENDENCE N REACTANCE
can be found by recursion and are given elsewhere [6], [7].

Similarly, we have
MATRIX

In order to derive a true network model of the discon-

Cos ~ = s,~cosq
b

S1l=sin~ S*=1 tinuity, we need to consider explicitly the frequency de-

,[

pendence of the reactance. It is expedient to introduce a

o,
b–d

fory= ~
normalized propagation constant

‘f?=
b+d

(15)

fory= ~
$T

2

77
F=:81O= ; –1 (22)

n~
Cos —

b
= ~ Snqcosqq. (16) ~ being the free-space wavelength. In the following, ~

q=o,z,. . . will play the role of an effective frequency variable. The

The required orthonormal basis on the aperture can be modal characteristic admittances, normalized to that of

built up as the fundamental mode, are given by

1
U,(e, q)=cose. —

n

1
u2(o, q) =cos3e. —

ti

u3(e, q) =Cose. cos2q

u4(e, q) = Cos50. +

.—

‘~m+” ’23)
VL

Observe that for n= O, m >1, the above reduces to the
u5(e, q) = Cos3e. cos2q . characteristic admittance of TEMO modes, excited by a

. . . . . . (17) purely inductive iris

The apparently arbitrary ordering will be made clear in

the following. Using the basis (17), we can express the ~o,m(j~)=- (24)
modal potentials (10), ordered according to increasing jfi -
cutojf number as follows:

For localized modes, the above frequency dependence can

4J(1,0)=P11%J% be approximated over a broad band by means of a posi-

i(3,0) = ‘31 SCX3UI + ‘33&#2
tive real lumped admittance corresponding to a parallel

Tn

+(1,2) = P11%3% + o + P1,s@.q
LA-

+(5,0) = P51%O% + P53sr3@2+ o+ P55s@4
Yo,m( @ = Jqm)

w + k$m) j~

2Si-
(25)

s. setc. (18) j~

The waveguide susceptance becomes the matrix The positive constant k~m), k~~) are close to unity and tend

to 1 as m~co. Given a band of interest, they are de-

:~’n‘jBP’i.. = ~=1~~ m2

F

YomnPwswPmsm termined for each m by minimizing the maximum ab-

,,, .
n=0,2,4,. ..,’ Eq< solute deviation of

(19) I ~o,m(j@ - yo,m(jiJ)l
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in the Chebyshev sense over the band. The high degree of

accuracy of this approximation has been demonstrated

previously [6]. When m =1, n >0 the modal admittance

reduces to

which is the admittance of the LSEl~ modes excited by a

purely capacitive iris. The above ex~ression can be ap-

proximated by a pure capacitance in ~

(27)

The positive constant k~) is close to unity and-+1 as

n-+ w. For each n, it is determined by minimizing the

maximum value of

I~o,,n(.@-Yo,,n(m)l

in the Chebyshev sense over the band of interest. As an

example of the accuracy of this approximation, for the

worst case: n =2, corresponding to one accessible model

for b/a =4/9 (standard waveguide), in the band 0.3< J3
<1.6, we obtain a maximum error of 1.6 percent. The

error reduces to 0.6 percent for k$z)= 1.0124 in the range

to 1.0< ~< 1.6, which is the standard waveguide band.

As the error decreases drastically with increasing n

(about a factor 10 for each successive value of n) the

frequency band can be extended at will by considering

more modes to be accessible. In the general case, m >1,

n >0, the admittance (23) can be approximated by

another parallel LC in ~

where i~(m, n), Ci= ~m2 – (a/bn)2 – 1 , and k$) and k~~

are positive constants close to unity with k$)-+ 1 as either

m or n-+. ce. For a given n,k!$)~l as m~co. These con-

stants can be determined with the same procedure as

above.

The error incurred in (28) is only a small fraction of

that involved in the approximation in (27). In fact, (27)

sets the overall limit to the accuracy of the lumped ap-
proximation. Introducing now the lumped frequency ap-

proximation (25), (27), and (28) in the expression (20) for

the susceptance matrix, we obtain

B(i7)=&-’-IPc) (29)

where we introduce the constant, positive definite

matrices

L -1= (~ind)-1 + (L,..)- ] (30)

C=cfid+ Ccap+ Cres (31)

with

h+(p, O), g.e(r, O), and the indexing follows the scheme

given in (17). Also,

~ = (Ad> ge(r,s) (33)

h and g are the same as in connection with (32)

We recognize that (Ltid) - * corresponds to the inductive

contribution (magnetic storage) of an inductive iris having

width identical to that of the resonant iris. C ‘nd is the

capacitive contribution associated with the above induc-

tive iris (electric storage). C’ap is the capacitive contribu-

tion of a capacitive iris having the same height as the

resonant iris. L’” and C’” are the inductive and capaci-

tive contributions, respectively, particular to the resonant

character of the iris.

As L and C are positive definite, constant symmetric

matrices, they can be diagonalized and B can be formally

inverted. As a result we have

B-’(j+&l@(G@j)-lAI (37)

where

~= T7--~/2

L1/2cL1/2= TATT (38)

and A is the diagonal matrix of the eigenvalues of (38).

Introducing now (37) into (9) we ob~ain

N

l<i,

(39)

j <k (40)

where 1/ ~02 is the oth element of the positive definite

diagonal matrix A, N is the order of the matrix B, i.e., the

order of the variational solution. We recognize in (40) the

Foster canonical form of the reactance. The poles SO and

the corresponding residue matrices are functions of the
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Fig. 2.
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Fig. 5. Residue (o= 1), resonant iris.
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Fig. 6. Pole (o= 2), resonant iris.

geometry only and they satisfy the convergence re@re-

ments described in [8].

A frequency independent lumped network model of the

iris can be derived from (40). For one accessible mode,

this is illustrated in Fig. 2. Poles and residues for one
accessible mode are plotted in Figs. 3–6 over a wide range

of aperture dimensions for a waveguide of standard aspect

ratio (a/ b =9/4). The constants ICI– k~ were computed

for the frequency range 1 <~< 1,6, corresponding to the

standard wave guide band. However, the resulting model

remains accurate even for frequencies somewhat beyond

the band.
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Fig. 7. (a) y-dependent basis functions. (b) x-dependent basis fuac-
tions.

As a check, the cases of the inductive and capacitive iris

can be recovered by letting d/b~ 1 and c/a+ 1, respec-

tively. The numerical results agree closely with those

previously obtained in [6] and [7], respectively. Poles and

residues for two and three accessible modes have also

been computed and can be found in [4]. The above results

eliminate the need of a field analysis program studying a

cascade of interacting resonant irises, such as in filters

and corrugated structures. The latter application will be

further pursued in the following.

IV. AN ALTERNATIVE EXPANDING SET

The choice of Schwinger’s functions as a basis is partic-

ularly convenient when the resonants iris approaches

either the capacitive (c/u-l) or the inductive limit (d/b

j 1), as then the quasi-static contribution can be extracted

and summed analytically.

For the general case, however, most of the computa-

tional effort is involved in summing the series for the

“resonant” terms, i.e., M >1, N >0.

With a view to summing those terms efficiently, we

have examined another choice of expanding set. This

consists in taking pulse functions in the y direction and

linear odd functions in the x direction, as shown in Fig.
7(a) and (b). The functions of the above set are obviously

independent and take account of the symmetry of the

field as well as of the boundary conditions.

A discussion of this question is omitted here for the

sake of brevity, but the details can be found in [4].

V. CORRUGATED RECTANGULAR WAVEGUIDE

A side view of the geometry is given in Fig. 8(a). The

unit cell of the periodic structure is defined as shown

between reference planes AA and CC. The equivalent

network of the unit cell is illustrated in Fig. 8(b). This

p-l+

A] B Ic ● **
.*.

I I I I I

II
.** J . . .

(a)

I AI

V*i

-Alrl/2uB ‘~1/2+c+T

w cl

,,1 i=l

t
i=2 x’ i=2 tV~i

&- ‘ ‘ #
~L ZL ——--’+

A’
iB_

%4
I
c

(b)

Fig. 8. (a) Side view of corrugated guide. (b) Network model of unit
cell,

consists of the lumped reactance

k;k
X’= ~:x k

(,)

(41)
. ..l. ._— _—___
x:x k

where x is given by (40) and k is the number of accessible

modes.

The lumped reactance is enclosed between two sets of k

parallel uncoupled transmission lines of length 1/2, 1

being the length of the unit cell.

The transfer (ABCD ) matrix of the reactance is

() (v u

)()

~ov=-------- ,____
Z B-

(42)
–jx-’ ~ u VB+

where U is the unit matrix of order k. The transfer matrix

for the length 1/2 of the multiple transmission line is

()(v Ch )()Z.Sh v
I A= Z - ‘Sh Ch I B-

(43)

where

Ch = diag(coshyll/2, coshy21/2,, . . . coshy~l/2)

Sh = diag(sinhyll/2, sinhyJ/2,. . . . coshy,l/2)

Z=diag(l, ~o~l,. .- ,~ojl). (44)

The total transfer matrix between reference planes A –

A and C – C is the product of the three individual transfer

matrices, i.e.,

“(Ch

Z -‘Sh
~hh ). (45)

The two submatrices on the main diagonal of 1? are

transposed of each other, owing to the longitudinal sym-.,
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metry of the network. The matrix T is given by

T=diag(coshyil) –jZ”Slz”x - ‘-CIL (46)

This is in fact the only matrix which will be needed in the

following. Imposing - the condition

satisfy Floquet’s theorem implies that

(9A=’WC
but, since

(Z=R”(%

that the structure

(47)

(48)

The transfer matrix of the unit cell must satisfy the

eigenvalue equation

‘(!)=’’’(;) (49)

where O is the propagation constant of the structure, the

vector (V, I)T determines the y-directed electric and x-di-

rected magnetic fields of the eigenmodes of the structure,

i.e.,

k

~y(x,Y) = x J“%?(W)
i=]

– Hx(x,y) = f li+i(x,y). (50)
j=l

The remaining field components can be derived through

Maxwell’s equations. The solution of the eigenvalue equa-

tion (49) is simplified if we consider the following analyti-

cal properties of the matrix R.

We observe first of all that if (49) is satisfied, then the

following eigenvalue equation is also satisfied.

~(R+R-’)( ~)=~(ee[+e-o’)( ~)=coshtll( ~). (51)

The above equation proves the physically intuitive fact

that if /3 is a propagation constant of the structure, then

– O is also a propagation constant.

Inspection of (45) shows that R -1 is obtained by re-

placing Sh by – Sh and x by – x. As a consequence, we

have

(R-I= T –W

–v TT )

so that

+(R+R-’)=(:$)

(52)

(53)

Some T and TT have the same eigenvalues, it is sufficient

to consider the reduced eigenvalue equation

T. V= cosh OIV. (54)

The matrix T is real, but not symmetric and therefore, its

eigenvalues are complex in general. Only for certain

ranges of frequency and combinations of geometry O will

become imaginary, describing a propagating mode. Equa-

tion (54) is difficult to solve analytically and must be

solved numerically.
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TABLE 1
CAPACITIWLY LOALN3DWAVBGU2DE~= @a,I/a = 1/16

P

1.0 1.1 1.2 1.3 1.4 1.5 1.6 k

?41 j4.416 jl+.859 .35.501 j5.744 36.188 j6.631 J7.C75
1

82 - - - - - - -

61 j3.937 j4.334 j4.732 ~5.131 j5.531 j5.933 j6.336

?32
3

11.276 1.1.112 10.93 10.729 10.506 10.262 9.9%

51 j3.936 J4.333 j4.731 j5.1.3 j5.53 j5.932 j6.33S
5

52 9.757 9.713 9.647 9.558 9.1,45 9.3’VJ 9.143

al 23.937 J4.334 j4.732 J5.131 J5.5Z 25.933 J6.336
7

?+ 14.385 14.177 13.945 13.688 13.404 17.091 12.748

TABLE H
CAPACITIVELY LOADED WAVEGUIDE e= Oa,I/a = 1/32

P

1.0 1.1 1.2 1.3 1.4 1.5 1.6 k

81 j5-395 35.935 >6.476 ~7.016 37.557 J8.099 J8.64
1

82 -

$al j4.452 7+.903 J5.354 J5.808 J6.263 j6.72 j7.18

8z 13.648 13.452
3

13.234 12.992 12.726 12.434 12.114

i51 34.45 J4.901 j5.353 35.806 J6.261 J6.719 J7.178

82
5

9.951 9.924 9.875 9.802 9.706 9.585 9.436

01 j4.53 24.903 25.355 j5.808 J6.263 36.72 j7.179
7

82 18.726 18.453 18.15 17.813 17.441 17.033 16.585

VI. EXAMPLES ON NUMERICAL RESULTS

In the following examples a seventh-order variational

solution was used, i.e., the dimension of the matrix B in

(9) was seven by seven. Owing to the variational character

of the approach and to the choice of basis functions the

above number turned out to be sufficient to assure good

accuracy of the field representation by any choice of the

iris dimensions.

A, Capacitively Loaded Waveguide

As a first example, let us consider a waveguide periodi-

cally loaded with capacitive irises.

The solution for this case can be recovered from the

general solution by setting c/a= 1, m= 1 in Section III,

corresponding to the excitation of LSE,. modes. Hence

L–] =0 and C= C’ap in (29).

Tables I and II display the lowest two eigenvalues of

the periodic s~ructure versus the effective frequency ~ in

the band 1< ~ <1.6 for 1, 3, 5, and 7 accessible modes for

the following dimensions: b/a =4/9, d/b =0.6. For these

iris dimensions, the excitation of higher order modes is
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TABLE III
INDUCTNELY LOADED WAVEGUIDE ~= @a,[/a = 1/ 16

TABLE V
WAVEGUIDE LOADED WITH RESONANT IRISES e= f?a, I/a = 1/8

1.0 1.1 1.2 1.3 l.h 1.5 1.6 k

q

1
.32 6.>87 6.172 5.925 5.644 5.32L 4.957 b. 532

al ~22.879 JN?.731 j15.292 J. O.675 jl.775 J2. L60 J2.076

a2 2.535 2.082 1.428 31.197 31.09 30.975 I ‘30.852

q J32.597 J21. @J ~lL.865 ~q.461 J3.704 J1.517 J2.325
5

52 3.018 2.652 2.179 1.502 ~.593 J1.7Q1 J2.51L

J

G1 c c c J17.031, J1.21i7 J2.078 J2.706
7

G2 2.697 2.323 1.816 0.992 J0.97fL J1.915 J2.521

1 1 1 1 1 ! 1 ! , I

considerable and therefore we expect, in principle, strong

interaction between closely spaced irises.

The spacing Z/a equals 1/16 in Table I and 1/32 in

Table II.

In fact, even for this close spacing, three accessible

modes seem to be sufficient to describe accurately the

effect of interaction.

B. Inductively Loaded Waveguide

The case of the inductively loaded waveguide can be

recovered from the general theory by setting d/b= 1 and

n = O in Section III, corresponding to the excitation of

TE~O modes. Hence, L = Lind in (37) and C= Cind in (38).

Table III shows the eigenvalues for 1, 3, 5, and 7 accessi-

ble modes over the band 1 <~< 1.6 for the waveguide

dimensions b/a =4/9, c/a =0.6 and for the spacing l/a

=1/16.

The slower convergence of the eigenvalues with increas-

ing number of accessible modes, as compared to the

capacitive case, is a consequence of the fact that the

cutoff numbers of higher order TE~O modes increase more

slowly than those of LSE1~ modes.

C. Waveguide Loaded with Resonant Irises

In the general case when c/a and d/b are less than

unity, the whole family of LSE~. modes is excited. Con-

sidering the cutoff characteristics of these modes, we

expect even stronger interaction and, consequently, slower
convergence of the eigenvalues with increasing number of

accessible modes.

In the example illustrated in Tables IV and V, the iris

dimensions were c/a =0.8, d/b =0.6 and the spacings

were chosen to Z/a= 1/4 and 1/8, respectively. The latter

spacing being close to the required value for practical

applications.

About seven accessible modes were required in order to

ensure convergence of the eigenvalues in the above exam-

ples.

Some comments are in order with respect to the number
and the ordering of the accessible modes in modelling the

resonant iris.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 ~ k

q 22.924 j3.3h0 23.744 34.138 J4.526 w.91o J5.290
1

i32 - 1-

% 22.695 j3.129 j3.530 23.934 ~!,.3]9 ,0,51, J5.072 ‘34.698

a2
3

10.877 10.757 10.625 10.1,8 10.323 . 9.961,

51 ~2.470 j2.90j jj. 314 J3.712
J4.099 IJ’}.422 J,. &59

G2
5

11.393 11.379 11.354 11.315 11.263 ! 11.1?7 11.116

‘al J2.643 J3.062 23.459 J3.845 J4.223 j4.596 j4.966

02 12.092
7

11.985 11.8S7 11.782 11.666 11.539 11.399

TABLE IV
WAVEGUIDE LOADED WITH RESONANTIRISESfi= @a, I/a= 1/4

P

1.0 1.2. 1.2 1.3 1.4 1.5 1.6 k

al j2.687 J3.22 j3.718 J4.192 j4.65 j5.098 j5.536
1

q -

al ~2.382 J2.934 j3.426 jj.887 j4. j29 jL.757 j5.176

02
3

13.323 13.191 13.056 12.911 12.754 12.586 12. [,03

G1 J2.147 j2.694 j3.185 J3.645 j4.087 j4.516 24.936

t22
5

12.83 1?.767 12.716 12.661 12.597 12.523 12.1,37

51 J2.395 ~2.90j J3.368 j3.808 34.234 j),. 651 35.06

82
7

15.188 ll\.7j2 14.?25 14.356 14.191 14.02 13.84

In principle, the ordering of the accessible modes is

quite arbitrary. Here we have chosen the criterion of

increasing cutoff. According to the geometry, however,

the excitation of some modes with higher cutoff number,

may be more significant than that of modes with lower

cutoff number. The off -diagonal elements of the reactance

matrix give the measure of this excitation.

The amplitude of the reactance matrix element times

the exponential decay factor:

,X,n,e-w

is, in fact, a good measure of the relative importance of

the mode “n”. Hence, the ordering chosen here is not
necessarily the optimum when working with irises of fixed

geometry, in the sense that a different ordering could then

be found which minimizes the number of accessible

modes needed in the model. This is an important consid-

eration with regard to modeling. Another comment is in

order with regard to the singularities of the reactance.

Since we have neglected losses, the reactance poles occur

at real frequencies and it is possible for some of the poles

to lie in the frequency band. These singularities are im-
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portant in determining the frequency behavior of the

eigenvalues of the periodic structure.

VII. CONCLUSIONS

We have presented wide-band equivalent circuits of

closely resonant irises in rectangular waveguides. Poles

and residues as functions of the geometry are provided so

that the user need not refer to a computer program.

The above equivalent circuits constitute the building

blocks of the network representation of an infinite wave-

guide periodically loaded with resonant irises, which we

have investigated. The particular cases of capacitively and

inductively periodically loaded waveguides are recovered

from the general solution, The same network approach

can be applied to waveguides loaded with other discon-

tinuities.
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Transmission Characteristics and a Design
Method of Transmission-Line Low-Pass

Filters with Multiple Pairs of Coincident
Zeros and Multiple Pairs of Coincident Poles

JUNZI HURUYA AND RISABURO SATO, FELLOW, IEEE

Abstract-The transmission cfwacteristka and a design methed are

presented for a tranamidon-fine low-pas fiiter with multiple pafrs of

coincident zeres in the finite frequency of the passband and multiple pairs

of coincident poles in the ftite frequeney of the ztopband and for a

trznamkion-fine low-paw fiiter with Butter’worth characteristic in the

pazaband and multiple pairs of coincident poles in the fink frequency of

the stopband. The former transmission-line low-pass fflter shows an im-

proved skirt attenuation performance and delay characteristic than a

Chebyshev tranamkion-line low-pass filter in the same network degree.

The latter type of transmission-fine low-pass fiiter shows an improved skirt

attenuation performance in comparison to a Butterworth transmission-fine

low-pass fflter in the same network degree, it is positioned about in the
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sity, Yamaguchi, Japan 753.
R. Sato is with the Department of Information Sciences, Tohoku
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ndddte between a Butterworth type and a Chebyshev type, the delay

characteristic is improved considerably in comparison to the Chebyshev

type, and the characteristic is C1OWto that of the Butterwortb type.

With this deaii methc@ the connecting unit elements in addition to the

stubs contribute to the attenuation response. The dez@ example is shown

on the basis of a concrete specifhtiom and it is shown that the obtained

atteuaztion ztrictfy fuffiis the specifkation.

I. INTRODUCTION

R ECENTLY, Levy [1] has shown a lumped element

rational function having single transmission zeros in

one ~oint of the stopband of a Chebyshev low-pass filter

which shows improvement of the skirt selectivity over an

ordinary Chebyshev low-pass filter. By use of cross cou-
pling, the realization of a high frequency filter is executed,

Further, M. C. Agarwal [2] has proposed a lumped ele-

ment rational function having multiple pairs of coincident
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