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Propagation in a Rectangular Waveguide
Periodically Loaded with Resonant Irises
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FELLOW, IEEE

Abstract—In this contribution we treat the problem of an infinite
rectangular waveguide periodically loaded by means of infinitely thin
resonant irises.

The method of solution breaks down the problem into two separate
steps: 1) the multiport network characterization of the resonant iris; 2) the
network analysis of the equivalent periodic network.

The results for the resonant iris can be used for various applications,
such as the design of waveguide filters and matching networks. In the
limiting cases of purely capacitive or inductive irises, the results agree
exactly with existing experimental and numerical values.

The size of the eigenvalue equation to be solved for the periodic
structure equals half the number of ports of the network characterization
of the iris and is generally small (typically five to seven). The eigenvalues
have good convergence properties with respect to the size of the matrix.

I. INTRODUCTION

n recent years the corrugated waveguide has found wide
Iuse in radar and communication systems. Significant
research has been done on the problem of the circular
corrugated waveguide. We distinguish three main ap-
proaches:

1) the modified boundary condition method, applica-
ble only for a special value of the groove depth [1],
[25;

2) the modified residue calculus technique [1], [3] ap-
plicable only for certain modal configurations;

3) mode matching technique [1] which is fairly general
in applicability.

In the case of the rectangular guide, however, method 1)
cannot be implemented analytically [3], [4]. Method 2) is
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altogether not applicable. Method 3) is also not applicable
for this kind of geometry owing to the nonseparability of
the configuration [4].

Brown in 1958 [5] suggested that a periodically loaded
waveguide be modeled by means of a cascade of identical
multiport reactances connected by a finite number of
uncoupled transmission lines. Each reactance represents a
discontinuity in the cascade, which causes coupling be-
tween waveguide modes otherwise uncoupled. Unfor-
tunately, up to date this approach could not be actually
implemented, due to the lack of proper multiport repre-
sentation of the discontinuity.

Recently, however, a method for deriving lumped,
wide-band equivalent networks of waveguide discontinui-
ties has become available. The above has been applied to
the problems of the inductive and capacitive iris and step
[6), [7]. Apart from having inherently good convergence
properties and involving manipulations with small
matrices only, this approach separates the frequency and
the geometry dependence, so that the analysis need not be
repeated at each frequency point. A detailed discussion
has been given elsewhere [6]-[8]. However, for the con-
venience of the reader, we recall here the concept of
“accessible” and “localized” modes. Accessible modes are
the waveguide modes that being excited at the location of
one discontinuity, are “seen” by the adjacent discontinui-
ties. This includes all the propagating modes of the origi-
nal (unloaded) waveguide, plus, possibly, the first few
evanescent ones, depending upon the separation between
adjacent discontinuities.

Each accessible mode corresponds to a pair of accessi-
ble ports in the multimode equivalent network of the
discontinuity. Between discontinuities, each accessible
mode is described by means of a length of transmission
line. All remaining modes, purely evanescent, are called
localized, as they remain localized to the neighborhood of
the discontinuity that excites them. The latter, collectively,
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gives rise to the energy storage and to the coupling be-
tween accessible modes, represented by the reactance of
the discontinuity.

The reactance is described by means of its poles and
residues, which are functions of the geometry only., Once
these data are available for a range of geometries the user
need no longer be concerned with the original field prob-
lem. The latter has been translated into a standard multi-
port network analysis problem.

In the case of the periodically loaded rectangular wave-
guide, the resonant iris is the building block of the struc-
ture. Relatively little is known about the resonant iris,
apart from early approximate results for the isolated iris
[9]. The results we will present here for the resonant iris
are also applicable to filter design in waveguides.

The unit cell of the resulting periodic equivalent circuit

_consists of a lumped multiport reactance enclosed be-

tween two sets of parallel transmission lines of equal
length. Upon application of the periodicity condition to
the unit cell, the problem of determining the propagation
constant on the corrugated waveguide reduces to the
solution of an eigenvalue equation whose order is equal to
the number of accessible modes, typically two to seven.
The eigenvalues show good convergence properties as the
number of accessible modes is increased.

The transverse fields are described by a linear combina-
tion of the accessible modes, with amplitudes determined
by the eigenvectors of the eigenvalue equation.,

II. THE RESoONANT IRIS

The geometry of a single resonant iris is illustrated in
Fig. 1. For the purpose of the present application, the iris
is supposed to be symmetric and infinitely thin. The
analysis can be extended to the case of finite thickness,
which might be relevant to other applications, as previ-
ously done for the inductive [6] and capacitive [7] iris.

When the iris is excited by the fundamental TE,, wave-
guide mode in a standard waveguide it is a very good
approximation to assume that the family of LSE, _, .
modes is excited [10], [11]. Owing to the symmetry of the
iris, m can only take odd values and » even values.

For propagation in the z direction, the characteristic
admittance is defined uniquely as the ratio H,/ E,, where

(i)'(xy) = Ey
n

=\/€ sin %x cos —l—:Iy, ie>(mn),
1 =

e,,={ = "m0

1, n0
Hx= - YOmnEy (2)

with
2
YOmn=(%) _ké/jwp"Ymn (3)
- (ﬁ’_’_)2+(ﬂ)2_k2 (4)
Ymn a b 0

We consider k& accessible modes at each side of each iris.
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Owing to the symmetry and to the fact that the iris is
infinitely thin, the resulting 2k-reactance matrix of the
discontinuity is of the form

x x
(x %) ()
where x is a kX k symmetric reactance matrix. The

Ritz—Galerkin variational expression for the matrix ele-
ments is [6]

o =

X = QiT' (B ) ’Qj’ (6)
The N-dimensional vector @, represents the function
¢;(x,y) in terms of a complete set of expanding functions
satisfying the E, boundary conditions, v,(x,y)(1 <p<N)
truncated after NV terms, and is given component wise by

0u= ’ f “6,(x.y)0,(x.y)dx (7a)

the components of the N X N matrix B are obtained from
the Green’s function

1<i, j<k.

—jE<x,y;x',y')=gkzyo,.@(x,y)q(xzy') ®)

as
(B),= f ,i [ f 0,(%:0) B (5,93 %',")0,(x',y")dx dy dx’ dy'.
(7b)

Observe that, consistently, with their definition, the acces-
sible modes do no appear in the above summation. Only
the localized modes contribute to energy storage in the
neighborhood of the discontinuity.

In order to improve the convergence of the infinite sum
in (8), it is convenient to integrate (7) by parts, making use
of the fact that E, must be zero at the aperture edges:
x=(a*xc)/2[12, p. 349]. Then a more convenient expres-
sion for x, is given by

Xy = QiT'B _I'Qj (9)
where Q; the vector corresponding to the mode potential
function

n mar nw
COS — COS ——

_ Ve

lll/i('x’y )_ m a b (10)
is given by an expression similar to (7a), where ¢, is
replaced by ¢; and v, by 4,=3/9,0,. B is the matrix
associated with

—jB(xxy;xl’y,): 2k2Y0i¢i(x’y)¢i(xl’y,)' (11)

The superscript T denotes transposition,
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A good choice of a basis for the aperture is provided by
the Schwinger’s functions, which being derived by confor-
mal mapping of the static fields, inherently satisfy the
edge condition for the inductive and capacitive limits. The
defining equation is [11, p. 350]

cos—qza)i = P, ,cosd (12)
where

(13)

and §=0, 7 correspond to x=(a ¥ ¢)/2, respectively. The
coefficients of the finite expansion

.. TC
P =sin —
a

m
cos X = > P, cospl

p=13, -

(14)

can be found by recursion and are given elsewhere [6], [7].
Similarly, we have

cos%=S”cosn S”=sinlb-d Seo=1
0, fory= %ﬁ
= b+d (15)
T fory = 5
nay “
cos——= > 8, cosq. (16)
b g=02,--

The required orthonormal basis on the aperture can be
built up as

1
u,(8,m)=cosf- —
‘ V2

1
u,(8,m)=cos36- ——
: V2
u;(8,m) =cosé- cos2n

1
uy(8,m)=cos56- —
* %

us(0,m) =cos36- cos2y.

(17)
The apparently arbitrary ordering will be made clear in
the following. Using the basis (17), we can express the
modal potentials (10), ordered according to increasing
cutoff number as follows:
Ya,00= P11 Seotty
¥3,00= P31 800ty + P33Spott,
Ya,2= P11 Syt + 0 + Py Spus
Y(5,00= Ps1Sootty + Pz Sogy + 0+ PssSoouy
» - etc. (18)

The waveguide susceptance becomes the matrix

oo’ 2 €n
2

R Wy
m=135,---,
n=02,4+) Ve,

YornPoo S Prw S

mp=nq— mr

(19)
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where the prime indicates that the accessible modes have
been excluded from the summation. Reverting to single
index notation, we let / correspond to (m,n), h to (p,q), g
to (r,s), so that

—JB,= > 20,0.4Y (20)
1>k
where
Ve,
th - p mp an
myV e
q
Ve,
Q= P, Sy (21
mVe,
III. FREQUENCY DEPENDENCE AND REACTANCE

MATRIX

In order to derive a true network model of the discon-
tinuity, we need to consider explicitly the frequency de-
pendence of the reactance. It is expedient to introduce a
normalized propagation constant

B'=%/310= (i—:)z—l (22)

A, being the free-space wavelength. In the following, 8
will play the role of an effective frequency variable. The
modal characteristic admittances, normalized to that of
the fundamental mode, are given by

m?—1

YO,mn(jE)= 2
JB m2+(%n) -1-482

+ JB . (23)

Vo5 -7

Observe that for n=0, m>1, the above reduces to the
characteristic admittance of TE,, modes, excited by a
purely inductive iris

_ — ]{ 2._p2_
YO,m(jB)= n lg I .
J

For localized modes, the above frequency dependence can
be approximated over a broad band by means of a posi-
tive real lumped admittance corresponding to a paratlel
LC

24

2 _ (m) 0
Vom( B) =k XL BT B
B Vm?—1
The positive constant k{™, k{™ are close to unity and tend
to 1 as m—oo. Given a band of interest, they are de-
termined for each m by minimizing the maximum ab-
solute deviation of

| Yo,m(JB) = Yo .(UB)

(25)
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in the Chebyshev sense over the band. The high degree of
accuracy of this approximation has been demonstrated
previously [6]. When m=1, »>0 the modal admittance
reduces to

b JB
a n2_.(-b-[{)2

a

)70, ln(JE) = (26)

which is the admittance of the LSE,, modes excited by a
purely capacitive iris. The above expression can be ap-
proximated by a pure capacitance in 8
= L
Yo, JB )= k§— jB. 27)

na
The positive constant k§” is close to unity and—>1 as

n—o0, For each n, it is determined by minimizing the
maximum value of

[Yo,12(JB) = Y0,1.(JB)]

in the Chebyshev sense over the band of interest. As an
example of the accuracy of this approximation, for the
worst case: n=2, corresponding to one accessible mode,
for b/a=4/9 (standard waveguide), in the band 0.3< 8
< 1.6, we obtain a maximum error of 1.6 percent. The
error reduces to 0.6 percent for k¥ =1.0124 in the range
to 1.0 < B < 1.6, which is the standard waveguide band.

As the error decreases drastically with increasing n
(about a factor 10 for each successive value of n) the
frequency band can be extended at will by considering
more modes to be accessible. In the general case, m>1,
n>0, the admittance (23) can be approximated by
another parallel LC in 8

kD mio1 kDB
Yo {JB)= ,_4— ——
JB '

3 - (28)

where i<>(m,n), c,.=\/m2—(a/ bn)’~1, and k§ and k¢
are positive constants close to unity with £?—1 as either
m or n—o0. For a given n,k{?>1 as m—co. These con-
stants can be determined with the same procedure as
above.

The error incurred in (28) is only a small fraction of
that involved in the approximation in (27). In fact, (27)
sets the overall limit to the accuracy of the lumped ap-
proximation. Introducing now the lumped frequency ap-
proximation (25), (27), and (28) in the expression (20) for
the susceptance matrix, we obtain

B(ﬁ)=%(L“—,§2C) (29)

where we introduce the constant, positive definite
matrices
L—1=(Lind)—1+(Lres)—1 (30)
C= "4 Coo 4 C* (31)
with
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2
m-—1

(L)' = 21 k{™ (32)
=

he>(p,0), g(r,0), and the indexing follows the scheme
given in (17). Also,

b

kgm,n)
m=13--

n=02..-

“« 11, 6ps

c. 2 " mpngt mr-ns>
V 5seq i m

h=(p,q), go(r,s) (33)
k™ 1
3 Pmmer

Vmi—1 m

h and g are the same as in connection with (32)

2 ’ kgn) €

*_P2S S
not (Sn) Ve T
n=02--- \ b

SO | n

g s
z, — PmpanPmr
m=13--- cl m V (seq
n=24...

(L)' =

Chi;d = 2

m=12

(34)

€ap
Chg -

(35)

res
Cig =

S, (36)

We recognize that (L% ™! corresponds to the inductive
contribution (magnetic storage) of an inductive iris having
width identical to that of the resonant iris. C'™ is the
capacitive contribution associated with the above induc-
tive iris (electric storage). C* is the capacitive contribu-
tion of a capacitive iris having the same height as the
resonant iris. L™ and C' are the inductive and capaci-
tive contributions, respectively, particular to the resonant
character of the iris.

As L and C are positive definite, constant symmetric
matrices, they can be diagonalized and B can be formally
inverted. As a result we have

B Y(B)=BMT(1-B*A)"'M (37)
where
M=T7L'?
L'’)CLV*=TAT" (38)

and A is the diagonal matrix of the eigenvalues of (38).
Introducing now (37) into (9) we obtain

. N (M0 (M0
xy(ﬁ)=ﬁ zl( QI)O(—— ?)o (39)
(8
B,
{0)
= § ——r—"B—, 1<i, j<k (40)

where 1/82? is the vth element of the positive definite
diagonal matrix A, N is the order of the matrix B, i.e., the
order of the variational solution. We recognize in (40) the
Foster canonical form of the reactance. The poles 8, and
the corresponding residue matrices are functions of the
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geometry only and they satisfy the convergence require-
ments described in [8].

A frequency independent lumped network model of the
iris can be derived from (40). For one accessible mode,
this is illustrated in Fig. 2. Poles and residues for one
accessible mode are plotted in Figs. 3—6 over a wide range
of aperture dimensions for a waveguide of standard aspect
ratio (a/b=9/4). The constants k, — ks were computed
for the frequency range 1< B < 1.6, corresponding to the
standard wave guide band. However, the resulting model
remains accurate even for frequencies somewhat beyond
the band.
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As a check, the cases of the inductive and capacitive iris
can be recovered by letting d/b—1 and ¢/a—1, respec-
tively. The numerical results agree closely with those
previously obtained in [6] and [7], respectively. Poles and
residues for two and three accessible modes have also
been computed and can be found in [4]. The above results
eliminate the need of a field analysis program studying a
cascade of interacting resonant irises, such as in filters
and corrugated structures. The latter application will be
further pursued in the following.

IV. AN ALTERNATIVE EXPANDING SET

The choice of Schwinger’s functions as a basis is partic-
ularly convenient when the resonants iris approaches
cither the capacitive (¢/a—1) or the inductive limit (d/b
—1), as then the quasi-static contribution can be extracted
and summed analytically.

For the general case, however, most of the computa-
tional effort is involved in summing the series for the
“resonant” terms, i.e., M >1, N >0,

With a view to summing those terms efficiently, we
have examined another choice of expanding set. This
consists in taking pulse functions in the y direction and
linear odd functions in the x direction, as shown in Fig,
7(a) and (b). The functions of the above sct are obviously
independent and take account of the symmetry of the
field as well as of the boundary conditions.

A discussion of this question is omitted here for the
sake of brevity, but the details can be found in [4].

V. CORRUGATED RECTANGULAR WAVEGUIDE

A side view of the geometry is given in Fig. 8(a). The
unit cell of the periodic structure is defined as shown
between reference planes 44 and CC. The equivalent
network of the unit cell is illustrated in Fig. 8(b). This
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consists of the lumped reactance

(41)

where x is given by (40) and k is the number of accessible
modes.

The lumped reactance is enclosed between two sets of k
parallel uncoupled transmission lines of length //2, /
being the length of the unit cell.

The transfer (4BCD) matrix of the reactance is

(D=2

where U is the unit matrix of order k. The transfer matrix
for the length //2 of the multiple transmission line is

(42)

V) =( Ch Z-Sh)( V) 43
(I 4 \Z"'Sh Ch I)B- 43)
where
Ch=diag(coshy,//2,coshvy,//2,- -+, coshy,!/2)
Sh=diag(sinhy,//2,sinhy,l/2,- - -, coshy,//2)
Z=diag(1, Y5+ -, Yer'). (44)

The total transfer matrix between reference planes 4 —
A and C— C is the product of the three individual transfer

matrices, i.e.,
R___(T W)=( Ch ZSh)( U 0)
v 17 Z7'Sh Ch/)\—jx' U
( Ch  ZSh

. (45
Z7'Sh  Ch ) “45)
The two submatrices on the main diagonal of R are
transposed of each other, owing to the longitudinal sym-
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metry of the network. The matrix T is given by
T=diag(coshy,/) —jZ-Sh-x~'-Ch. (46)

This is in fact the only matrix which will be needed in the
following. Imposing the condition that the structure
satisfy Floquet’s theorem implies that

(7).=e(7)
(7).=#(7).

The transfer matrix of the unit cell must satisfy the
eigenvalue equation

(7))

where @ is the propagation constant of the structure, the
vector (V,I)T determines the y-directed electric and x-di-
rected magnetic fields of the eigenmodes of the structure,
1e.,

(47)
but, since

(43)

(49)

k
Ey(xay) = 2 Vi¢i(x’.V)

i=1

k
- Hx(x’y) = 21 Ii‘i’i(x’y)' (50)
The remaining field components can be derived through
Maxwell’s equations. The solution of the eigenvalue equa-
tion (49) is simplified if we consider the following analyti-
cal properties of the matrix R.
We observe first of all that if (49) is satisfied, then the

following eigenvalue equation is also satisfied.
LR+R (V) =4+ e ( V) =cosmar V). (1)

The above equation proves the physically intuitive fact
that if @ is a propagation constant of the structure, then
— @ is also a propagation constant.

Inspection of (45) shows that R ~! is obtained by re-
placing Sh by — Sk and x by —x. As a consequence, we

have
_ T -Ww
R 1=( v T ) (52)
so that
_ T O
L(R+R 1)=(0 TT). (53)

Some T and T7 have the same eigenvalues, it is sufficient
to consider the reduced eigenvalue equation

T-V=coshdiV. (54)

The matrix T is real, but not symmetric and therefore, its
eigenvalues are complex in general. Only for certain
ranges of frequency and combinations of geometry § will
become imaginary, describing a propagating mode. Equa-
tion (54) is difficult to solve analytically and must be
solved numerically.
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TABLE I _
CAPACITIVELY LOADED WAVEGUIDE 8=0a,!/a=1/16
B
1.0 1.1 1.2 1.3 1.4 1.5 1.6 k
61 Jhebl6 4-859 35.301 5.7k 16,188 j6.631 17.075
1
62 - - - - - - -
B | 33.937 | gh.33h | gh.732 35.131 | 35.531 | 35.933 | 36,336
3
5, | m.276 | 11112 | 10.93 10,729 | 10.506 | 10.262 | 9.99%
51 33.926 34.323 34731 35.13 35.53 35.932 364335
- 5
| 9-757 9.713 9.647 9.558 9.445 | 94307 9.143
B | 03.957 | w33 | she732 | g5.151 | 35.531 | 35.933 | 96.336
- 7
. 14.385 14.177 13.945 13.638 13.404 | 13.091 12.748
TABLE II _
CAPACITIVELY LOADED WAVEGUIDE 8 =0a, [/a=1/32
B
1.0 1.1 1.2 1.3 1.b 1.5 1.6 k
8 | J5.395 | 35.935 96,476 | 37,016 | 37.557 | 38.099 | 38.64
1
62 - - - - - - -
51 Jheli52 b 903 35.354 15.808 16.263 | j6.72 j7.18
3
B, |13.648 | 13.452 13,236 | 12.992 [12.726 | 12.434 | 12.114
61 b b5 34901 §5.353 35.806 36.261 | 36,719 37.178
5
5, | 9.951 9.924 9.875 9.802 9.706 | 9.585 9.436
| .53 14,903 35.355 35.808 16.263 | 36.72 §7.179
7
62 18.726 18.453 18.15 17.813 17,441 | 17.033 16.585

VL

In the following examples a seventh-order variational
solution was used, i.e., the dimension of the matrix B in
(9) was seven by seven, Owing to the variational character
of the approach and to the choice of basis functions the
above number turned out to be sufficient to assure good
accuracy of the field representation by any choice of the
iris dimensions.

EXAMPLES ON NUMERICAL RESULTS

A. Capacitively Loaded Waveguide

As a first example, let us consider a waveguide periodi-
cally loaded with capacitive irises.

The solution for this case can be recovered from the
general solution by setting ¢/a=1, m=1 in Section I,
corresponding to the excitation of LSE, modes. Hence
L™ '=0and C=C*®" in (29).

Tables I and II display the lowest two eigenvalues of
the periodic structure versus the effective frequency B in
the band 1< E <1.6for 1, 3, 5, and 7 accessible modes for
the following dimensions: b/a=4/9, d/b=0.6. For these
iris dimensions, the excitation of higher order modes is
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TABLEIII TABLE V _
INDUCTIVELY LOADED WAVEGUIDE 8=8a,//a=1/16 ‘WAVEGUIDE LOADED WITH RESONANT IRISES §=0a,//a=1/8
5 5
1.0 1.1 1.2 1.z 1o 1.5 1.6 X 1.0 1.1 1.2 1.3 1.4 1.5 1.6 k|
51 _ _ _ _ 51 32.924 334300 13.744 34.138 14526 | 34.910 35.290 .
1 3, - - - - - - -
52 6.387 6.172 5.925 5.64k4 5.32h 4,957 L.53%2 2
i - 8 |02.695 | 53120 | 33530 | 33.93h | 319 | ghu698 | 35.072
) 322.879 | 318.731 J15.292| 3.0.675 | j1.775 | 32.460 12.076 3|
1 3 8, 110.877 | 10.757 10.625 | 10.48 10.323 | 10,151 | 9.96h
62 2.525 2.082 1.428 31.197 31.09 30.975 230.852
61 32470 324903 3331k 13.712 34.099 | 3h.482 4859
g . 1.758 1L.86 ERSE 3.704 1.517 2.325 5
1 R I ! 4 ’ ! ’ 5 3 11.293 11.279 11.3254 11.3215 11.263 | 11.197 11.116
52 3,018 2.652 2.179 1.502 0.593 J1.701 32.510 2
Lo - 2706 61 32643 334062 33.459 33.845 4223 | jh.596 344966 )
[ c c C 17.03h L2 D, 32.
él ) o J - + JO o 31 s . 7 62 12.092 11.985 11.887 11,782 11.666 | 11.539 11.399
L | 2.697 2.323% 1.81 0.9 30-978 | 31915 1 g2,
considerable and therefore we expect, in principle, strong TABLE IV ~
interaction between closely spaced irises. WAVEGUIDE LOADED WITH RESONANT IRISES 6=, {/a=1/4
The spacing //a equals 1/16 in Table I and 1/32 in f
Table II. 1 1.2 1.3 1.4 1.5 1.6 k
. . . 1.0 1. . . . . .
In fact, even for this close spacing, three accessible
modes seem to be sufficient to describe accurately the 8 |ie.687 | 3322 §3.718 4.292]  34.65 | §5.008 | 35.536 §
effect of interaction. 5, | - - R - , , -
B. Inductively Loaded Waveguide 8 |02.382 | g2.93 | §3.026 | §3.887| §h.329 | gh.7S7 | 35.176 ;
The case of the inductively loaded waveguide can be 8, 13323 ] 13391 | 13.05 | 12.911] 12754 | 12.586 | 12.103
recovered from the general theory by setting d/b=1 and - - - - P
. . . N . 2,147 j2.691 j3.185 34645 jh.087 i e 51 +93
n=0 in Section III, corresponding to the excitation of R e ’ 6; ’ ’ ’ 5
ind : ind : -3 12,83 12.767 12.716 12,6611 12.597 |[12.523 | 12.437
TE,,, modes. Hence, L= L™ in (37) and C=C™ in (38). 2
Table III shows the elgenvalues__for 1,3,5 and 7 acce§51- B, |s2395 | 32,503 | 33.368 | g3.808] gl | st | 95,06
ble modes over the band 1< 8<1.6 for the waveguide 5 lisass | wosz | wesss | 1| waor |meos | e |
dimensions b/a=4/9, ¢/a=0.6 and for the spacing //a

=1/16.

The slower convergence of the eigenvalues with increas-
ing number of accessible modes, as compared to the
capacitive case, is a consequence of the fact that the
cutoff numbers of higher order TE,,, modes increase more
slowly than those of LSE,, modes.

C. Waveguide Loaded with Resonant Irises

In the general case when c¢/a and d/b are less than
unity, the whole family of LSE,,, modes is excited. Con-
sidering the cutoff characteristics of these modes, we
expect even stronger interaction and, consequently, slower
convergence of the eigenvalues with increasing number of
accessible modes.

In the example illustrated in Tables IV and V, the iris
dimensions were ¢/a=0.8, d/b=0.6 and the spacings
were chosen to //a=1/4 and 1/8, respectively. The latter
spacing being close to the required value for practical
applications.

About seven accessible modes were required in order to
ensure convergence of the eigenvalues in the above exam-
ples.

Some comments are in order with respect to the number
and the ordering of the accessible modes in modelling the
resonant iris.

In principle, the ordering of the accessible modes is
quite arbitrary. Here we have chosen the criterion of
increasing cutoff. According to the geometry, however,
the excitation of some modes with higher cutoff number,
may be more significant than that of modes with lower
cutoff number. The off-diagonal elements of the reactance
matrix give the measure of this excitation.

The amplitude of the reactance matrix element times
the exponential decay factor:

lenle‘

is, in fact, a good measure of the relative importance of
the mode “n”. Hence, the ordering chosen here is not
necessarily the optimum when working with irises of fixed
geometry, in the sense that a different ordering could then
be found which minimizes the number of accessible
modes needed in the model. This is an important consid-
eration with regard to modeling. Another comment is in
order with regard to the singularities of the reactance.
Since we have neglected losses, the reactance poles occur
at real frequencies and it is possible for some of the poles
to lie in the frequency band. These singularities are im-
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portant in determining the frequency behavior of the
eigenvalues of the periodic structure.

VIL

We have presented wide-band equivalent circuits of
closely resonant irises in rectangular waveguides. Poles
and residues as functions of the geometry are provided so
that the user need not refer to a computer program.

The above equivalent circuits constitute the building
blocks of the network representation of an infinite wave-
guide periodically loaded with resonant irises, which we
have investigated. The particular cases of capacitively and
inductively periodically loaded waveguides are recovered
from the general solution. The same network approach
can be applied to waveguides loaded with other discon-
tinuities.

CONCLUSIONS
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Transmission Characteristics and a Design
Method of Transmission-Line Low-Pass
Filters with Multiple Pairs of Coincident

Zeros and Multiple Pairs of Coincident Poles

JUNZI HURUYA anD RISABURO SATO, FELLOW, IEEE

Abstract—The transmission characteristics and a design method are
presented for a transmission-line low-pass filter with multiple pairs of
coincident zeros in the finite frequency of the passband and multiple pairs
of coincident poles in the finite frequency of the stopband and for a
transmission-line low-pass filter with Butterworth characteristic in the
passband and muitiple pairs of coincident poles in the finite frequency of
the stopband. The former transmission-line low-pass filter shows an im-
proved skirt attenuation performance and delay characteristic than a
Chebyshev transmission-line low-pass filter in the same network degree.
The latter type of transmission-line low-pass filter shows an improved skirt
attenuation performance in comparison to a Butterworth transmission-line
low-pass filter in the same network degree, it is positioned about in the
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middle between a Butterworth type and a Chebyshev type, the delay
characteristic is improved considerably in comparison to the Chebyshev
type, and the characteristic is close to that of the Butterworth type.

With this design method, the connecting unit elements in addition to the
stubs contribute to the attenuation response. The design example is shown
on the basis of a concrete specification, and it is shown that the obtained
attenuation strictly fulfills the specification.

I. INTRODUCTION

ECENTLY, Levy [1] has shown a lumped element

rational function having single transmission zeros in
one point of the stopband of a Chebyshev low-pass filter
which shows improvement of the skirt selectivity over an
ordinary Chebyshev low-pass filter. By use of cross cou-
pling, the realization of a high frequency filter is executed.
Further, M. C. Agarwal [2] has proposed a lumped ele-
ment rational function having multiple pairs of coincident
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